首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5340篇
  免费   659篇
  2021年   60篇
  2018年   58篇
  2017年   58篇
  2016年   106篇
  2015年   170篇
  2014年   171篇
  2013年   215篇
  2012年   227篇
  2011年   222篇
  2010年   146篇
  2009年   135篇
  2008年   215篇
  2007年   185篇
  2006年   169篇
  2005年   182篇
  2004年   174篇
  2003年   155篇
  2002年   162篇
  2001年   160篇
  2000年   150篇
  1999年   138篇
  1998年   69篇
  1997年   59篇
  1996年   60篇
  1995年   65篇
  1994年   67篇
  1993年   71篇
  1992年   137篇
  1991年   136篇
  1990年   112篇
  1989年   122篇
  1988年   108篇
  1987年   91篇
  1986年   96篇
  1985年   90篇
  1984年   82篇
  1983年   80篇
  1982年   64篇
  1981年   79篇
  1980年   53篇
  1979年   67篇
  1978年   63篇
  1977年   64篇
  1976年   53篇
  1975年   57篇
  1974年   68篇
  1973年   65篇
  1972年   63篇
  1971年   59篇
  1970年   55篇
排序方式: 共有5999条查询结果,搜索用时 15 毫秒
41.
Cane toads (Bufo marinus) are now moving about 5 times faster through tropical Australia than they did a half-century ago, during the early phases of toad invasion. Radio-tracking has revealed higher daily rates of displacement by toads at the invasion front compared to those from long-colonised areas: toads from frontal populations follow straighter paths, move more often, and move further per displacement than do toads from older (long-established) populations. Are these higher movement rates of invasion-front toads associated with modified locomotor performance (e.g. speed, endurance)? In an outdoor raceway, toads collected from the invasion front had similar speeds, but threefold greater endurance, compared to conspecifics collected from a long-established population. Thus, increased daily displacement in invasion-front toads does not appear to be driven by changes in locomotor speed. Instead, increased dispersal is associated with higher endurance, suggesting that invasion-front toads tend to spend more time moving than do their less dispersive conspecifics. Whether this increased endurance is a cause or consequence of behavioural shifts associated with rapid dispersal is unclear. Nonetheless, shifts in endurance between frontal and core populations of this invasive species point to the complex panoply of traits affected by selection for increased dispersal ability on expanding population fronts.  相似文献   
42.
43.
44.
The A(280)/A(260) ratio of a purified protein is frequently used as an indication of the purity of the preparation with respect to nucleic acids. We show here that for low-molecular-weight recombinant proteins purified from Escherichia coli, a low A(280)/A(260) ratio can also result from contamination with UDP-linked murein precursors derived from bacterial cell wall metabolism. Although these precursors are small molecules of molecular weight 1000-1200, they comigrate in gel filtration with recombinant human FKBP (MW 11,820). This gel filtration behavior, which is distinct from that of unmodified mononucleotides, does not reflect binding interactions with FKBP, but is an intrinsic property of these precursors. Therefore, these molecules would be expected to copurify with other low-molecular-weight proteins, especially in the abbreviated purification protocols made possible by freeze-thaw release of recombinant proteins from E. coli (Johnson, B. H., and Hecht, M. H. (1994) BioTechnology 12, 1357-1360). Several alternative strategies are discussed for integrating these findings into the design of improved purification procedures for low-molecular-weight recombinant proteins.  相似文献   
45.
Snake fungal disease (SFD) is a clinical syndrome associated with dermatitis, myositis, osteomyelitis, and pneumonia in several species of free-ranging snakes in the US. The causative agent has been suggested as Ophidiomyces ophiodiicola, but other agents may contribute to the syndrome and the pathogenesis is not understood. To understand the role of O. ophiodiicola in SFD, a cottonmouth snake model of SFD was designed. Five cottonmouths (Agkistrodon piscivorous) were experimentally challenged by nasolabial pit inoculation with a pure culture of O. ophiodiicola. Development of skin lesions or facial swelling at the site of inoculation was observed in all snakes. Twice weekly swabs of the inoculation site revealed variable presence of O. ophiodiicola DNA by qPCR in all five inoculated snakes for 3 to 58 days post-inoculation; nasolabial flushes were not a useful sampling method for detection. Inoculated snakes had a 40% mortality rate. All inoculated snakes had microscopic lesions unilaterally on the side of the swabbed nasolabial pit, including erosions to ulcerations and heterophilic dermatitis. All signs were consistent with SFD; however, the severity of lesions varied in individual snakes, and fungal hyphae were only observed in 3 of 5 inoculated snakes. These three snakes correlated with post-mortem tissue qPCR evidence of O. ophiodiicola. The findings of this study conclude that O. ophiodiicola inoculation in a cottonmouth snake model leads to disease similar to SFD, although lesion severity and the fungal load are quite variable within the model. Future studies may utilize this model to further understand the pathogenesis of this disease and develop management strategies that mitigate disease effects, but investigation of other models with less variability may be warranted.  相似文献   
46.
The mitotic indices, villus heights, and crypt depths were determined in each of three jejunal regions (proximal, middle, and distal) for five animals each in the flight, vivarium, and synchronous groups. Because of the rapid turnover of intestinal mucosal cells and the delay in recovering the flight animals, it is not known whether the proliferation of jejunal mucosal cells is affected by microgravity conditions associated with spaceflight. However, since there were no consistent differences between animals in the flight group and those in the synchronous and vivarium control groups, it appears that any effects of microgravity on the turnover of jejunal mucosal cells are short-lived. Thus, this study represents an initial step in determining the effects of microgravity on the proliferation and turnover of intestinal mucosal cells.  相似文献   
47.
48.
49.
The structure of myoglobin(Fe II)-ethyl isocyanide has been solved at 1.68 A resolution by X-ray crystallography. The isocyano group of the ligand is distorted from the linear conformation observed in solution and in model compounds. Local changes in the protein conformation are also seen. The side-chain of Arg-CD3 moves out into the solvent, and the side-chain of His-E7 swings up and away from the ligand. Both of these side-chains show disorder indicative of dynamic behavior. These outward movements of His-E7 and Arg-CD3 side-chains clear a path from the solvent to the heme iron, suggesting a mechanism for ligand entry.  相似文献   
50.
The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control diet. Behavioral analysis revealed that animals demonstrated profound anxiety-like behavior as observed by performance on the elevated-plus maze with time spent by the mice in the open arm (ANOVA p = 0.000; NCS:HA7 p = 0.004; NCS:OS-HA7 p = 1.000; HA7:OS-HA7 p = 0.0001) as well as entries in the open arm (ANOVA p = 0.039; NCS:HA7 p = 0.041; HA7:OS-HA7 p = 0.221; NCS:OS-HA7 p = 1.000). Open-field behavior, a measure of general locomotion and exploration, revealed statistically significant differences between groups in locomotion as a measure of transitions across quadrant boundaries. Additionally, the open-field assay revealed decreased exploration as well as decreased rearing in HA7 and OS-HA7 fed mice demonstrating a consistent pattern of increased anxiety-like behavior among these groups. Critically, behavior was not correlated with weight. These results indicate that diets based on resistant starch can be utilized to produce quantifiable changes in the gut microbiota and should be useful to “dial-in” a specific microbiome that is unique to a particular starch composition. However, undesirable effects can also be associated with resistant starch, including lack of weight gain and increased anxiety-like behaviors. These observations warrant careful consideration when developing diets rich in resistant starch in humans and animal models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号